初2数学下册书所有知识点
初二数学下知识点总结
平移与旋转
旋转
旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
旋转的性质:
旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。
中心对称
中心对称的定义:
如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。
中心对称图形的定义:
如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。
中心对称的性质:
在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
轴对称
轴对称的定义:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对 称图形,这条直线叫做对称轴。
轴对称图形的性质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
图形变换
图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。(如下图)
4. 正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。
初2数学上册知识点
初二数学上册知识点总结
1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等
4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行
10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等
13.两直线平行,内错角相等 14.两直线平行,同旁内角互补
☆定理 三角形两边的和大于第三边 ☆推论 三角形两边的差小于第三边
三角形内角和定理 三角形三个内角的和等于180°
推论:直角三角形的两个锐角互余
推论:三角形的一个外角等于和它不相邻的两个内角的和
推论:三角形的一个外角大于任何一个和它不相邻的内角
全等三角形的对应边、对应角相等
边角边(SAS):有两边和它们的夹角对应相等的两个三角形全等
角边角( ASA);有两角和它们的夹边对应相等的两个三角形全等
推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
边边边(SSS) 有三边对应相等的两个三角形全等
斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
定理:在角的平分线上的点到这个角的两边的距离相等
定理:到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角)
推论:等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论:等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论:三个角都相等的三角形是等边三角形
推论:有一个角等于60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理 线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理:关于某条直线对称的两个图形是全等形
定理:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
定理 四边形的内角和等于360°
四边形的外角和等于360°
多边形内角和定理 n边形的内角的和等于(n-2)×180°
推论:任意多边的外角和等于360°
平行四边形性质定理:平行四边形的对角相等
平行四边形性质定理:平行四边形的对边相等
推论 夹在两条平行线间的平行线段相等
平行四边形性质定理3 平行四边形的对角线互相平分
平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
平行四边形判定定理3 对角线互相平分的四边形是平行四边形
平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
矩形性质定理1 矩形的四个角都是直角
学好初二数学的方法:
一、该记的记,该背的背,不要以为理解了就行
数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想:数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量
,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
初二数学知识点
八年级数学上册复习提纲
第一章 勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长 , , 满足 ,那么这个三角形是直角三角形。满足 的三个正整数称为勾股数。
第二章 实数
1.平方根和算术平方根的概念及其性质:
(1)概念:如果 ,那么 是 的平方根,记作: ;其中 叫做 的算术平方根。
(2)性质:①当 ≥0时, ≥0;当 <0时, 无意义;② = ;③ 。
2.立方根的概念及其性质:
(1)概念:若 ,那么 是 的立方根,记作: ;
(2)性质:① ;② ;③ =
3.实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。
5.算术平方根的运算律: ( ≥0, ≥0); ( ≥0, >0)。
第三章 图形的平移与旋转
1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
3.作平移图与旋转图。
第四章 四边形性质的探索
1.多边形的分类:
2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:
(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1*L2/2)。
(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半; 在直角三角形中30°所对的直角边是斜边的一半。
(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。
(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。
(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半
3.多边形的内角和公式:(n-2)*180°;多边形的外角和都等于 。
4.中心对称图形:在平面内,一个图形绕某个点旋转 ,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
第五章 位置的确定
1.直角坐标系及坐标的相关知识。
2.点的坐标间的关系:如果点A、B横坐标相同,则 ∥ 轴;如果点A、B纵坐标相同,则 ∥ 轴。
3.将图形的纵坐标保持不变,横坐标变为原来的 倍,所得到的图形与原图形关于 轴对称;将图形的横坐标保持不变,纵坐标变为原来的 倍,所得到的图形与原图形关于 轴对称;将图形的横、纵坐标都变为原来的 倍,所得到的图形与原图形关于原点成中心对称。
第六章 一次函数
1.一次函数定义:若两个变量 间的关系可以表示成 ( 为常数, )的形式,则称 是 的一次函数。当 时称 是 的正比例函数。正比例函数是特殊的一次函数。
2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。
3.正比例函数图象性质:经过 ; >0时,经过一、三象限; <0时,经过二、四象限。
4.一次函数图象性质:
(1)当 >0时, 随 的增大而增大,图象呈上升趋势;当 <0时, 随 的增大而减小,图象呈下降趋势。
(2)直线 与轴的交点为 ,与 轴的交点为 。
(3)在一次函数 中: >0, >0时函数图象经过一、二、三象限; >0, <0时函数图象经过一、三、四象限; <0, >0时函数图象经过一、二、四象限; <0, <0时函数图象经过二、三、四象限。
(4)在两个一次函数中,当它们的 值相等时,其图象平行;当它们的 值不等时,其图象相交;当它们的 值乘积为 时,其图象垂直。
4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。
5.运用一次函数的图象解决实际问题。
第七章 二元一次方程组
1.二元一次方程及二元一次方程组的定义。
2.解方程组的基本思路是消元,消元的基本方法是:①代入消元法;②加减消元法;③图象法。
3.方程组解应用题的关键是找等量关系。
4.解应用题时,按设、列、解、答 四步进行。
5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。
第八章 数据的代表
1.算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。
2.中位数和众数:中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。众数指的是一组数据中出现次数最多的那个数据
初2数学下册全部知识点
第十六章 分式
一、定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。
二、分式基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
三、分式计算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒置后,与被除式相乘。
分式乘方:分式乘方要把分子、分母分别乘方。
四、整数指数幂:(1) (2)较小数的科学记数法;
五、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。(这个解是增根,原方程无解)。
第十七章 反比例函数
一、形如y= (k为常数,k≠0)的函数称为反比例函数;
二、反比例函数的图像属于双曲线;
三、性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
第十八章 勾股定理
一、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
二、勾股定理逆定理:如果三角形三边长a,b,c满足 ,那么这个三角形是直角三角形。
三、经过证明被确认正确的命题叫做定理。
四、我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章 四边形
一、平行四边形:
1、定义:有两组对边分别平行的四边形叫做平行四边形。
2、性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
3、判定:(1)两组对边分别相等的四边形是平行四边形;
(2)两组对角分别相等的四边形是平行四边形;
(3)对角线互相平分的四边形是平行四边形;
(4)一组对边平行且相等的四边形是平行四边形。
(5)有两组对边分别平行的四边形叫做平行四边形。(定义)
4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。
二、矩形:
1、定义:有一个角是直角的平行四边形叫做矩形。
2、性质:矩形的四个角都是直角;矩形的对角线平分且相等。
3、判定:(1)有一个角是直角的平行四边形叫做矩形。(定义)
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
4、直角三角形斜边上的中线等于斜边的一半。
三、菱形:
1、定义:一组邻边相等的平行四边形是菱形
2、性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
3、判定:(1)一组邻边相等的平行四边形是菱形。(定义)
(2)对角线互相垂直的平行四边形是菱形。
(3)四条边相等的四边形是菱形。
4、S菱形=底×高 S菱形= ab(a、b为两条对角线)
四、正方形:
1、定义:有一组邻边相等的矩形是正方形。或有一个角是直角的菱形是正方形。
2、性质:四条边都相等,四个角都是直角;正方形既是矩形,又是菱形。
3、判定:(1)邻边相等的矩形是正方形。
(2)有一个角是直角的菱形是正方形。
五、梯形:
1、定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
2、等腰梯形定义:两腰相等的梯形叫做等腰梯形。
性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
判定:同一底上两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。
3、梯形的中位线分别平行于上、下两底,且等于上、下两底和的一半。
六、重心:
1、线段的重心就是线段的中点。
2、平行四边形的重心是它的两条对角线的交点。
3、三角形的三条中线交于疑点,这一点就是三角形的重心。
七、数学活动(教材115页):
1、折纸多60°、30°、15°的角证明方法(重点30°角)
2、宽和长的比是 (约为0.618)的矩形叫做黄金矩形。
第二十章 数据的分析
一、加权平均数:计算公式(教材125页。)
二、中位数:将一组数据按照由小到大(大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
三、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。
四、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
五、方差:
1、计算公式: ( 表示 的平均数)
2、性质:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
六、数据的收集与整理的步骤:
1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告
七、八年级数学全册的知识点总结
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。
第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法
初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差